Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Bresolin, Tiago [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/190717
|
Resumo: |
Registros de características quantitativas e informações genotípicas cole- tadas para cada animal são utilizados para identificar regiões do genoma associadas à variação fenotípica. No entanto, essas investigações são, geralmente, realizadas com base em testes estatísticos de correlação ou associação, que não implicam em causalidade. A fim de explorar amplamente essas informações, métodos poderosos de inferência causal foram desenvolvidos para estimar os efeitos causais entre as variáveis estudadas. Apesar do progresso significativo neste campo, inferir os efeitos causais entre variáveis aleatórias contínuas ainda é um desafio e poucos estudos têm explorado as relações causais em genética quantitativa e no melhoramento animal. Neste contexto, dois estudos foram realizados com os seguintes objetivos: 1) Buscar as relações causais entre as características de carcaça e qualidade de carne usando um modelo de equação estrutural (MEE), sob modelo linear misto em bovinos da raça Nelore, e 2) Reconstruir redes de genes-fenótipos e realizar análise de rede causal por meio da integração de dados fenotípicos, genotípicos e transcriptômicos em bovinos da raça Nelore. Para o primeiro estudo, um total de 4.479 animais com informação fenotípica para o peso da carcaça quente (PCQ), área de olho lombo (AOL), espessura de gordura subcutânea (EGS), força de cisalhamento (FC) e marmoreio (MAR) foram usados. Os animais foram genotipados usando os painéis BovineHD Bead- Chip e GeneSeek Genomic Profiler Indicus HD - GGP75Ki. Para inferência causal usando MEE, uma metodologia de múltiplos passos foi utilizada: a) um modelo multicaracteristica padrão, considerando as características estudadas, foi ajustado e as (co)variâncias residuais a posteriori foram estimadas, b) o algoritmo "Inductive Causa- tion" (IC) foi utilizado para inferir as estruturas causais entre as caracteríticas usando as (co)variância residuais a posterior, e c) a partir da estrutura causal recuperada pelo algoritmo IC, o MEE foi ajustado. Aplicando intervalo de maior densidade a posteriori (HPD) de 95 %, 90 % e 85 %, as mesmas estruturas causais entre as característi- cas foram detectados pelo algoritmo IC, com links não direcionados entre EGS com PCQ e MAR. Ligação extra entre FC e PCQ e a direção entre EGS e PCQ foram identificados usando intervalo de HPD menor (80 %), enquanto que o link entre EGS e MAR permaneceram estatisticamente sem direção. Dois MEE diferentes foram ajustados com base na rede causal recuperada pelo algoritmo IC, com a seta EGS → MAR ou com a seta EGS ← MAR. O MEE que melhor se ajustou compreende as seguintes ligações entre características: FC → AOL, FC → PCQ, PCQ → AOL, EGS → PCQ e EGS → MAR com coeficientes estruturais a posteriori igual a -0,29, 0,43, 0,10, 1,92 e 0,03, respectivamente. O MEE final revelou relações causais entre as características, e os efeitos causais sugerem que intervenções em FC e no EGS afe- tariam diretamente o PCQ e a MAR. Para o segundo estudo, um total de 4.599 animais com informações fenotípicas (AOL, EGS e FC) e genotípicas (como descrito anterior- mente) foi utilizados. O sequenciamento do RNA (RNA-Seq) para 80 amostras de tecido muscular de animais da raça Nelore foi realizado pelo sistema Illumina HiSeq 2500 produzindo leituras pared-end de 2x100 pares de bases usando amostra de tecido muscular. Redes de gene-fenótipo e análise de rede causal foram realizadas usando uma abordagem de três passos: a) análises de varredura do genôma para identificar a associação entre dados genotípicos e fenotípicos (pQTL - mapeamento de locos de características quantitativas fenotípicas) e entre dados genotípicos e de expressão gênica (eQTL - mapeamento de locos de características quantitativas de expressão). Os efeitos dos marcadores estimados em cada mapeamento de pQTL para os fenótipos estudados (AOL, EGS e FC) foram usados para realizar uma análise multicaracteristica. b) regiões significativas para os dois mapeamentos de QTL (multicaracteristica e eQTL) foram co-localizadas, e c) a reconstrução da rede usando um algoritmo de aprendizado estrutural causal considerando AOL, EGS, FC, eQTL e características de expressão gênica foi realizada. A partir da análise multi-característica, 14 regiões do genoma foram associadas significativamente com AOL, EGS e FC e 19 cis-eQTL estavam sobrepondo cinco das regiões do genoma. Com base na posição cis-eQTL (a mais significativa em cada região do genoma), trinta e dois genes próximos foram identificados. Integrando dados fenotípicos, genotípicos e de expressão gênica a rede inferida indicou que o rs137704711, localizado no cromossomo 20, afe- tou os três fenótipos (AOL, EGS e FC), e o rs133894950, localizado no cromossomo 16, afetou o EGS por meio da expressão de vários genes localizados em diferentes cromossomos. As inferências causais realizadas utilizando diferentes metodologias foram capazes de identificar relações causais entre as variáveis em estudo. |