Construções de reticulados via extensões cíclicas de grau ímpar

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Oliveira, Everton Luiz de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/86491
Resumo: Neste trabalho, descrevemos cíclicas de reticulados algébricos Zn-rotacionados de dimensão ímpar. Essas construções são obtidas através da imersão Rn, via homomorfismo canônico, de determinados Z-módulos livres de posto finito contidos em subcorpos de extensões ciclotômicas do tipo Q(ζp), Q(ζp2), Q(ζpq)e Q(ζpq2), com p e q primos ímpares. Caracterizamos os reticulados e apresentamos propriedades e aplicações na Teoria da Informação.