Modelo multiobjetivo de análise envoltória de dados combinado com desenvolvimento de funções empíricas e otimização via simulação Monte Carlo

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Figueiredo, Marcelo Vilela [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/150767
Resumo: O controle de qualidade é um dos principais pilares para um bom rendimento de uma linha produtiva, visando garantir maior eficiência, eficácia e redução de custos de produção. A identificação de causas de defeitos e o controle das mesmas é uma atividade relativamente complexa, devido à infinidade de variáveis presentes em determinados processos. Na produção de itens à base de aço fundido, objetiva-se reduzir defeitos de fundição (rechupes, trincas, problemas dimensionais, entre outros), os quais podem ser ocasionados por diversas variáveis de processo, tais como: composição química do aço, temperatura de vazamento e propriedades mecânicas. Em virtude disso, o presente trabalho foi desenvolvido em uma indústria siderúrgica de grande porte, a qual atua na produção de componentes ferroviários e industriais. Por meio de sua extensa base de dados, foram avaliadas as eficiências dos produtos produzidos, sendo os mesmos denominados DMU (Decision Making Units). Para tal foi aplicada a BiO-MCDEA (Bi Objective Data Envelopment Analysis) em sete DMUs produzidas à base de aço fundido em função de 38 variáveis de processos. Nesta aplicação foram evidenciadas as variáveis de processos (input/output) influentes na determinação da eficiência das DMUs. Uma vez obtidos tais resultados, foram desenvolvidas funções empíricas para as variáveis respostas em função das variáveis de processos influentes por meio de regressão não-linear múltipla. Por fim foi realizada a Otimização via Simulação Monte Carlo de forma a determinar com quais valores se deve trabalhar com cada input para a otimização das funções empíricas. Os resultados obtidos foram satisfatórios, sendo bem condizentes com a realidade da empresa e a abordagem aplicada por meio da combinação de diferentes ferramentas se mostrou aderente à realidade estudada, e também inovadora.