Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Felipe, Ester Ferreira [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/214783
|
Resumo: |
O objetivo deste trabalho foi avaliar a aplicação de diferentes modelos e testar diferentes cenários de treinamento e validação para a predição de valores genômicos para Idade à Puberdade de Machos (IPM), em bovinos da raça Nelore. O conjunto de dados utilizado pertence às fazendas participantes do Programa Nelore Brasil, da Associação Nacional de Criadores e Pesquisadores (ANCP), sendo dados de 11.095 animais fenotipados para IPM e 37.146 animais genotipados com o painel CLARIFIDE® Nelore 3.0 contendo 27.821 marcadores do tipo single nucleotide polymorphisms (SNP). Os efeitos dos marcadores foram estimados a partir dos dados genômicos, considerando diferentes distribuições a priori para os efeitos e variâncias dos SNPs. Os modelos estudados foram: Bayes A, Bayes B, Bayes C, Bayesian LASSO, GBLUP (Genomic Best Linear Unbiased Prediction) e ssGBLUP (single-step Genomic Best Linear Unbiased Prediction). A habilidade de predição das diferentes metodologias foi comparada testando diferentes cenários de treinamento e validação e por meio das correlações entre os pseudo-fenótipos (EBV (valor genético estimado) e Y* (fenótipo ajustado para os efeitos fixos)) e o valor genômico direto predito (DGV). Este trabalho teve como objetivo avaliar a aplicação dos modelos Bayesianos, GBLUP e ssGBLUP e testar diferentes cenários de treinamento e validação. Não houve diferença na habilidade de predição e sobretudo no viés, entre os modelos bayesianos, e estes são mais vantajosos para realizar a seleção genômica para IPM quando comparados ao GBLUP, sendo menos viesados e possuindo maior habilidade de predição. Não houve diferença na habilidade de predição entre os modelos bayesianos e o ssGBLUP, entretanto os modelos Bayes A, Bayes B e Bayes C apresentaram DGVs menos viesados. A metodologia mais adequada para predizer os valores genômicos da IPM foi a validação cruzada. |