Modelos paramétricos de matrizes de covariância para medidas repetidas: um estudo de simulação sobre o ajuste, o erro e o poder estatístico em modelos lineares mistos

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Vieira, Lucas Vasconcelos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/213630
Resumo: Em experimentos com medidas repetidas, a premissa de simetria composta (esfericidade), isto é, de correlação constante entre observações tomadas na mesma unidade, nem sempre é observada. Não obstante, os dados são frequentemente analisados como se correlações entre as medidas repetidas fossem constantes, como no caso da ANOVA para medidas repetidas, ou utilizando métodos que apenas consideram todas as correlações distintas, como no caso da ANOVA multivariada, podendo impactar na taxa de rejeição da hipótese nula, e consequentemente afetar a taxa de erro do tipo I e o poder estatístico. Nesse contexto, o presente estudo propôs investigar a aplicação de modelos lineares mistos com diferentes pressupostos sobre a matriz de covariância em conjuntos de dados provenientes de experimentos com medidas repetidas simulados. Foram avaliados 84 cenários que variaram quanto o padrão da matriz de covariância (14 estruturas), número de medidas repetidas (4 e 8) e de repetições (4, 8 e 12). Foram simulados 10,000 conjuntos de dados para cada cenário baseado em uma distribuição normal multivariada e que foram posteriormente analisados utilizando modelos lineares mistos aliados a máxima verossimilhança restrita. A taxa de erro do tipo I e o poder estatístico para o teste de hipótese da interação entre tratamentos e medidas repetidas foram estimados como a proporção de valores p menores ou iguais a 0.01 ou 0.05 de um total de 10,000 testes para cada cenário. Os modelos também foram avaliados quanto a habilidade de ajuste aos dados a partir dos critérios de seleção BIC. Assim, a frequência com a qual as estruturas de covariância foram escolhidas pelos critérios de seleção foi computada. Os resultados indicam que o pressuposto escolhido com maior frequência pelos critérios de informação resultou da estrutura de covariância especificada que correspondeu à estrutura de covariância empírica dos conjuntos de dados analisados, particularmente para aqueles conjuntos com tamanho amostral maiores. Os resultados também indicam que o uso de modelos de covariância que não reconheça correlações heterogêneas entre as medidas repetidas pode inflar o erro do tipo I a níveis muito liberais ou reduzi-lo a níveis muito conservadores, podendo afetar a conclusão dos experimentos agrícolas. Para um nível de significância e 0.05, o enviesamento da taxa de erro do tipo I foi superior a 2α, enquanto para um nível de significância de 1%, o enviesamento foi superior a 4α, quando o pressuposto sobre a estrutura de covariância dos dados não considerou a existência de correlações heterogêneas, particularmente para aqueles conjuntos de dados com variâncias também heterogêneas, com um número maior de medidas repetidas e um menor tamanho amostral. A proporção de modelos de covariância escolhidos pelo critério de seleção foi superior para os modelos de covariância que correspondiam a estrutura empírica dos dados, particularmente para aquelas simulações com maior número de medidas repetidas e maior tamanho amostral.