Classificação de cobertura do solo utilizando árvores de decisão e sensoriamento remoto

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Celinski, Tatiana Montes [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/101691
Resumo: Este trabalho teve por objetivo a discriminação de classes de cobertura do solo em imagens de sensoriamento remoto do satélite CBERS-2 por meio do Classificador Árvore de Decisão. O estudo incluiu a avaliação de combinações de atributos da imagem para melhor discriminação entre classes e a verificação da acurácia da metodologia proposta comparativamente ao Classificador Máxima Verossimilhança (MAXVER). A área de estudo está localizada na região dos Campos Gerais, no Estado do Paraná, que apresenta diversidade quanto aos tipos de vegetação: culturas de inverno e de verão, áreas de reflorestamento, mata natural e pastagens. Foi utilizado um conjunto de dezesseis (16) atributos a partir das imagens, composto por: bandas do sensor CCD (1, 2, 3, 4), índices de vegetação (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), componentes de mistura (solo, sombra, vegetação) e os dois primeiros componentes principais. A acurácia da classificação foi avaliada por meio da matriz de erros de classificação e do coeficiente kappa. A coleta de amostras de verdade terrestre foi realizada utilizando-se um aparelho GPS de navegação para o processo de georreferenciamento, para serem usadas na fase de treinamento dos classificadores e também na verificação da acurácia. O processamento das imagens e a geração dos mapas temáticos foram realizados por meio do Sistema de Informações Geográficas SPRING, sendo as rotinas desenvolvidas na linguagem de programação LEGAL. Para a geração do Classificador Árvore de Decisão foi utilizada a ferramenta See5. Na definição das classes, buscou-se um alto nível discriminatório a fim de permitir a separação dos diferentes tipos de culturas presentes na região nas épocas de inverno e de verão. A classificação por árvore de decisão apresentou uma acurácia total de 94,5% e coeficiente kappa igual a 0,9389, para a cena 157/128; para...