Aplicação de modelos robustos para a predição de valores genéticos em bovinos de corte

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Bastos, Charles Rodrigues lattes
Orientador(a): Cardoso, Fernando Flores lattes
Banca de defesa: Boligon, Arione Augusti lattes, Yokoo, Marcos Jun-Iti lattes, Duarte Filho, Paulo Fernando Marques lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pampa
Programa de Pós-Graduação: Mestrado Acadêmico em Computação Aplicada
Departamento: Campus Bagé
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5285
Resumo: Valores extremos podem distorcer o resultado de uma avaliação genética. Da mesma forma, a exclusão destes valores pode ocultar alterações relevantes em um rebanho. A predição dos valores genéticos, em uma população de indivíduos, deverá ter um nível mais elevado de precisão quando a informação fenotípica e de pedigree disponíveis corresponderem a dados fidedignos. Entretanto, fatores como o efeito potencial de lesões desconhecidas, doenças, tratamento diferenciado ou até mesmo erros de entrada de dados são variáveis que não são consideradas nos modelos estatísticos, mas são capazes de comprometer a qualidade dos dados a ponto de influenciar significativamente o desempenho de um indivíduo, ou grupo de indivíduos, gerando valores extremos que poderão enviesar as estimativas dos parâmetros genéticos. Os modelos estatísticos mistos são os mais utilizados para a predição de valores genéticos porém, são sensíveis a dados com valores extremos e necessitam editar ou descartar estes dados, para mitigar a distorção dos resultados. Diante disso, o objetivo deste trabalho é demonstrar que a implementação de um modelo robusto pode reduzir a influência destes dados com valores extremos e melhorar o resultado da predição sem descartar dados. Para tanto, foi desenvolvido um algoritmo que calcula as equações de modelos mistos, identifica a relação entre os valores extremos e o resultado da predição, introduzindo, quando necessário, uma variável de ponderação capaz de reduzir o desvio de cada observação em relação à média de sua unidade amostral. Os resultados obtidos demonstraram que foi possível melhorar a precisão das estimações, reduzindo, em alguns casos, a influência de valores extremos em até 90 por cento, de acordo com o desvio padrão calculado, sem descartá-los do modelo. Desta forma, diante de conjuntos de dados com valores extremos, o modelo robusto de predição apresentou resultados mais precisos, em comparação ao modelo misto. Nas duas características avaliadas, houveram reduções entre 55 e 79 por cento no intervalo entre o maior e o menor valor estimado.