TouceiraTech: um Farm Management Information System para pecuária de precisão baseado em predição com redes neurais recorrentes

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Soares, Ânderson Fischoeder
Orientador(a): Pinho, Leonardo Bidese de
Banca de defesa: Pinho, Leonardo Bidese de, Ferreira, Ana Paula Lüdtke, Bremm, Carolina, Trentin, Gustavo
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pampa
Programa de Pós-Graduação: Mestrado Acadêmico em Computação Aplicada
Departamento: Campus Bagé
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/5729
Resumo: Para aumentar a produtividade na pecuária de corte é fundamental aprimorar o manejo do pasto, o que demanda a mensuração periódica da massa e do acúmulo de forragem e o ajuste da taxa de lotação. Portanto, mostra-se relevante desenvolver ferramentas capazes de auxiliar os pecuaristas neste processo. O presente trabalho, amparado inicialmente por uma metodologia exploratória e, posteriormente, explicativa, propõe, implementa e avalia o TouceiraTech, um protótipo de FMIS para Pecuária de Precisão capaz de coletar, armazenar, pré-processar, predizer e visualizar dados sobre a taxa de acúmulo, necessária para o ajuste da taxa de lotação em uma área de interesse georreferenciada. O TouceiraTech foi projetado de forma interdisciplinar, a partir da expansão de um modelo original de predição de disponibilidade de forragem, baseado em aprendizado de máquina com Redes Neurais Artificiais do tipo LSTM com dados de vegetação campestre obtidos pela amostragem histórica, direta, destrutiva, em experimentos realizados para avaliar a produção animal em diferentes condições de manejo do campo nativo. No modelo de predição são agregados dados meteorológicos, coletados remotamente de estação meteorológica automática próxima à região de interesse e, também, dados de previsão meteorológica. Esses dados são automaticamente pré-processados pelo TouceiraTech para estimação de variáveis específicas, com destaque para uma nova abordagem automatizada para a estimativa da evapotranspiração. Além disso, permite o uso de amostras indiretas não destrutivas da vegetação, com base no NDVI, a partir do processamento de imagens aéreas incorporadas ao seu banco de dados espacial. Os resultados demonstram a eficácia das coletas periódicas automatizadas dos dados meteorológicos necessários para a predição, a partir de bases remotas do INMET, INPE e NOAA. Em especial, comprovam que mudanças na abordagem de treinamento do modelo, de forma estratificada, complementada por ajustes nas suas variáveis de entrada, permitiram a concepção de modelos especializados por tipos de tratamento com acurácia significativamente superior à do modelo original. Adicionalmente, indicam o potencial da incorporação de imagens aéreas georreferenciadas para viabilizar um sistema de suporte à decisão de ajuste de taxa de lotação com base em amostragem indireta de baixo custo operacional, em substituição ao método direto.