Purificação da xilanase de Thermomyces lanuginosus e suas propriedades estruturais e catalíticas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Torre, Carla Lieko Della lattes
Orientador(a): Kadowaki, Marina Kimiko lattes
Banca de defesa: Maller, Alexandre lattes, Oliva, Maria Luiza Vilela lattes, Kadowaki, Marina Kimiko lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Cascavel
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Farmacêuticas
Departamento: Centro de Ciências Médicas e Farmacêuticas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br/handle/tede/2962
Resumo: Enzymes of the xylanolytic complex, from microorganisms, have been an increasingly important biotechnological tool mainly in industrial processes that require high temperatures, such as in the baking industry, animal feed, textile, pulp and cellulose. Among the fungi producing thermostable enzymes, Thermomyces lanuginosus has been evidenced as a good producer of xylanases. In this context, xylanase from the recently isolated thermophilic fungus of the Paraná Atlantic Forest, T. lanuginosus, was purified, biochemically characterized, as well as a structureactivity correlation study of the enzyme was investigated through circular dichroism and fluorescence spectroscopy. Extracellular xylanase was purified after four steps of ion exchange chromatographic columns and molecular filtration. The purity and molecular mass (21.3 kDa) of the enzyme were determined by SDS-PAGE and MALDI-TOF/MS. The xylanase is highly specific to the beechwood xylan substrate and generated mainly xylobiose (X2) and xylotriose (X3), products characteristic of the action of endoxylanase. The enzyme was able to cleave the xylooligosaccharides xylotetraose and xylopentaose, except xylobiose and xylotriose. It exhibit higher activity at pH 6.5 and temperature of 75°C, with stability between pH 5.0-8.0 for 100 hours and thermostability between 40 and 75°C for 5 hours. The deconvolution of the circular dichroism spectrum (CD) enzyme revealed a secondary conformation rich in β-structures with transition midpoint temperature (Tm) of 73.0  0.2°C. In this structural study, xylanase reveals that to perform high enzymatic activity, it was necessary a conformational change. Its secondary structure is conserved even at pH extremes at temperatures up to 70°C and in the presence of MnCl2 (1 mM), DTT (5 mM) and high concentration of guanidine (6 M). Intrinsic fluorescence reveals that the tertiary structure is influenced by pH, guanidine (1 M) associated with temperature and in the presence of MnCl2 and DTT, whereas extrinsic fluorescence, using the ANS probe, shows changes in pH extremes and in the presence of MnCl2 and DTT. Fluorescence results suggest that both the increased enzymatic activity in the presence of cofactors and the loss of activity at extreme pH values are related to changes in the tertiary structure of the enzyme. Thus, T. lanuginosus xylanase has interesting biochemical characteristics for application in several industrial sectors that mainly use high temperature conditions.