Obtenção de concentrado protéico de folhas e parte aérea da mandioca (Manihot Esculenta Crantz)

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Silva, Janaina Lima da
Orientador(a): Gomes, Simone Damasceno lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Parana
Programa de Pós-Graduação: Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/2682
Resumo: Leaves and aerial part of the cassava are great protein, vitamins, minerals and essential amino acids sources, being these abundant and in low cost. However, this residual is still little explored. The cassava leaves use as protein source is, many times, not stimulated by the presence of anti nutritional factors what indicates the obtainment of proteic concentrates. The objective of this study was to obtain proteic concentrates from cassava leaf and aerial part (leaf, stalk and stem) through 4 extraction methods, besides to evaluate the mineral composition and functional properties of the obtained concentrates. The extraction methods used were: 1) Extraction method by isoeletric precipitation described by CEREDA; VILPOUX (2003); 2) Extraction Method by fermentation described by CHAVES (1987); 3) Extraction Method by fermentation described by CHAVES (1987) with fermentation time shortening described by FERRI (2006); 4) Extraction Method by fermentation described by CHAVES (1987) with pH alteration in the end of fermentation described by FERRI (2006).It was determined for each method the extraction yield, the proteic concentrate yield, the mass and protein loss. In the obtained concentrates were determined the Fe, Mn, Cu, Na, K and Zn levels, besides the functional properties of water and oil absorption. The factorial 2X4 experimental outline was used, being its factors the material kind (leaf and aerial part) and the protein extraction methods, with 3 repetitions, constituting 24 experimental parts. The variable analysis was also made, being its averages compared by the Tukey test in the 5% significance level. The yields obtained on the leaves were 18,31%, 14,11%,14,40% and 13,45% for methods 1, 2, 3 and 4 respectively. On the aerial parts the yields of concentrate obtained were 3,66%, 6,10%, 6,30% and 6,55% for methods 1, 2, 3 and 4 respectively. The leaves presented average extraction yield values three to four times bigger than the values presented by the aerial part, being them more adequate to get proteic concentrate from. The proteic concentrates obtained presented good quantity of nutrients like Fe, Mn, Cu, Na, K and Zn, indicating their application in the food industry, without difference between the concentrates obtained from the leaves or the aerial part. It was observed an elevated capacity of water absorption on the proteic concentrates, indicating its application in foods as meat, bread, soups and sauces. The oil absorption capacity on proteic concentrates was also high, indicating their industrial application in products preparation as sausages, dough, mayonnaise and other salad dressings increasing the good flavor retention of these products.