Algoritmos de inteligência computacional utilizados na detecção de fraudes nas redes de distribuição de energia elétrica

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Queiroz, Altamira de Souza lattes
Orientador(a): Franco, Edgar Manuel Carreño lattes
Banca de defesa: Freitas, Ricardo Luiz Barros de lattes, Candido Junior, Arnaldo lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual do Oeste do Paraná
Foz do Iguaçu
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Computação
Departamento: Centro de Engenharias e Ciências Exatas
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede.unioeste.br:8080/tede/handle/tede/1030
Resumo: One of the main problems currently faced by electric utilities is the occurrence of energy losses in the distribution network caused by fraud and electricity theft. Because of the financial losses and risks to public safety, the development of solutions to detect and combat fraud in the distribution networks is of the utmost importance. This work presents an analysis of computational intelligence algorithms to extract knowledge in databases with information from monthly energy consumption to identify consumption patterns with anomalies which could represent fraud. The algorithms Artificial Neural Networks and Support Vector Machines were tested to see which one perform better on the identification consumption patterns with abnormalities. Tests have shown that the algorithms used are able to detect patterns in electricity consumption curves, including special situations of fraud that manual techniques did not detect.