Regressão quantílica multitarefa via redes neurais profundas

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Zeco, Estevão Sérgio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.unb.br/handle/10482/51811
Resumo: A regressão quantílica via redes neurais tem se consolidado como uma abordagem poderosa para modelar relações não lineares entre variáveis, permitindo a estimação individual de quantis condicionais. No entanto, essa técnica enfrenta desafios quando é necessário estimar múltiplos quantis simultaneamente. Neste trabalho, propomos uma nova arquitetura para Regressão Quantílica Multitarefa via Redes Neurais Profundas, visando aprimorar tanto a precisão quanto a eficiência computacional na estimação de quantis. Baseada na arquitetura de Kuleshov e Deshpande (2022), essa nova arquitetura, denominada RQRN1E, inova ao unificar dois estágios da arquitetura original em um único estágio e ao introduzir o logito do τ diretamente na penúltima camada intermediária da rede. Nos três conjuntos de dados avaliados, os resultados evidenciaram que o modelo RQRN1E superou os modelos concorrentes, apresentando consistentemente a menor perda quantílica e a melhor cobertura para os quantis, o que reflete uma melhor precisão e calibração na estimativa dos quantis. Além disso, o RQRN1E destacou-se pela eficiência computacional, com menor tempo de processamento e rápida convergência, sem comprometer a qualidade das previsões.