Modelagem estatística híbrida multidimensional utilizando geoestatística e aprendizagem de máquina

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Pires, Jandresson Dias
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Estatística Aplicada e Biometria
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://locus.ufv.br//handle/123456789/32072
https://doi.org/10.47328/ufvbbt.2023.712
Resumo: A Modelagem Estatística Multidimensional é uma abordagem que busca representar, graficamente, dados de um determinado domínio de aplicação e fornece mecanismos interativos para a interpretação e compreensão das informações apresentadas. Nesta tese, a aplicação dessa abordagem, foi explorada em diferentes contextos, demonstrando sua eficácia na representação de informações multidimensionais. O objetivo foi a elaboração de modelos multidimensionais dos atributos físicos ou químicos do solo, bem como a predição das propriedades dos maciços rochosos, com base em técnicas de Estatística, Geoestatística e Inteligência Geográfica. Os dados utilizados foram provenientes de furos de sondagem em uma mina em Minas Gerais, Brasil, e de amostras de solo e inventário de castanhais nativos no estado do Amazonas, Brasil. Para alcançar esse objetivo, foram empregados mecanismos de aprendizado de máquina e técnicas de visualização, reconhecendo que, nenhuma técnica isolada, oferece o melhor desempenho para todas as tarefas de representação de dados multidimensionais. Portanto, uma estratégia interessante adotada foi analisar várias representações simultaneamente, mantendo uma conexão semântica entre elas, permitindo que, as ações realizadas em uma técnica, sejam refletidas, automaticamente, nas demais. Os resultados obtidos demonstraram a aplicabilidade e confiabilidade dos modelos desenvolvidos, tanto na visualização e interatividade do usuário com os resultados, quanto na qualidade das informações em si. Além disso, ressalta-se que a abordagem proposta neste trabalho pode ser aplicada em outras áreas e contextos geológico-geomecânicos, contribuindo para uma melhor compreensão e tomada de decisão, em diversos campos da engenharia e ciências ambientais. Em suma, esta tese oferece uma contribuição significativa para a Modelagem Estatística Multidimensional, mostrando sua utilidade na representação de dados complexos, como atributos do solo e propriedades geomecânicas dos maciços rochosos. Os resultados obtidos proporcionam insights valiosos para a comunidade científica e para os profissionais envolvidos no estudo e análise desses domínios, promovendo avanços no entendimento e gerenciamento de questões ambientais e geotécnicas. Palavras-chave: Inteligência Geográfica. Krigagem. Ciência de Dados.