Decision tree e geoestatística na redução do número de análises de micronutrientes do solo

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Batista, Luciano Gonçalves
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Estatística Aplicada e Biometria
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://locus.ufv.br/handle/123456789/33047
https://doi.org/10.47328/ufvbbt.2024.475
Resumo: Para realizar a interpolação por krigagem, é importante que cada ponto num semivariograma seja obtido com base no mínimo da combinação de 30 pares de pontos. Além disso, alguns autores alegam que é necessário ter pelo menos 100 amostras para fazer a interpolação. Sendo assim, o processo de amostragem se torna caro para o produtor rural. Como alternativa de contornar este problema de amostragem, foi utilizado metodologias de machine learning. O objetivo principal deste trabalho é avaliar o uso da metodologia de decision tree na redução do adensamento amostral para atributos do solo visando a realização da krigagem ordinária com tamanho amostral reduzido. Para isso, foi realizado 50 amostragem pelo algoritmo Latin Hypercube Sampling (LHS), com malhas contendo 82, 112 e 127 pontos amostrados e os valores faltantes foram preditos com decision tree, até completar 150 pontos e logo em seguida foi realizado a krigagem ordinária para as malhas 127, 112 e 82 , que foi gerado pela combinação das 50 predições por decision tree e avaliados os valores da Raiz Quadrada do Erro Médio (RMSE) e Média do Erro Absoluto (MAE), denominados RMSE_Krig e MAE_Krig. Foi percebido que há uma redução nestas estatísticas ao passo que aumentamos a redução amostral. A redução das estatísticas de validação indica que à medida que aumentamos a quantidade de amostras preditas com decision tree, há uma melhoria no modelo de krigagem ordinária. Ao fazer o mapa de atributos para as malhas reduzidas, é percebido que o padrão de concentração de nutrientes dos solos nas malhas reduzidas segue semelhante ao padrão original, ou seja, regiões com maiores concentrações ainda mantêm níveis elevados, enquanto aquelas com menores concentrações continuam a apresentar índices reduzidos. Ao fazer o mapa de atributos das malhas reduzidas é percebido que o padrão de concentração de micronutrientes dos solos nas malhas reduzidas segue semelhante ao padrão original, ou seja, zonas com maiores concentrações ainda continuam com concentrações elevadas e regiões com menores concentrações continuam com concentrações menores. Com isso, a decision tree, se mostrou eficiente em preservar o padrão de distribuição dos micronutrientes. Palavras-chave: Adensamento amostral; Aprendizado estatístico; Krigagem ordinária.