Redes neurais artificiais: novo paradigma para a predição de valores genéticos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Gabi Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Estatística Aplicada e Biometria
Mestrado em Estatística Aplicada e Biometria
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/4079
Resumo: Até então, as formas de aumentar o ganho por seleção tem sido apontadas pelas diferentes estratégias preconizadas nos métodos de melhoramento, ou pela utilização dos princípios básicos da experimentação, ou ainda recorrer a modelos biométricos que buscam parametrizar as influências tanto genotípicas quanto ambientais. Assim, no que se refere aos métodos de genética e estatística utilizados para seleção de genótipos superiores, destacam-se os métodos derivados da teoria de seleção direta, seleção indireta e por índice de seleção, o método de seleção combinada e o método REML-BLUP, dentre outros. Apesar das diversas metodologias disponíveis para a seleção de genótipos superiores, ainda é comum e necessário praticar seleção de indivíduos em relação a características com baixa confiabilidade de predição do valor genotípico a partir de um valor fenotípico dado pela média fenotípica corrigida ou ajustada em função da agregação de informações de parentes, de caracteres correlacionados ou de práticas de redução do efeito ambiental. No final, considera-se esta média fenotípica ajustada como a medida mais apropriada para indicar a superioridade genética e predizer o ganho genético. No entanto, tais modelos ou procedimentos não contemplam uma infinidade de outras informações estatísticas de grande relevância, diferentes da média fenotípica que é usualmente adotada, mas que agregam informações importantes acerca do genótipo avaliado e que têm sido deixadas à margem dos estudos envolvendo melhoramento genético e critérios de seleção. Neste contexto, as redes neurais artificiais constituem novo paradigma que tem sido empregado, ainda que de forma tênue, nos programas de melhoramento genético animal e vegetal. Essa abordagem, diferentemente das modelagens estocásticas utilizadas até então, é baseada nos princípios de aprendizado e de inteligência computacional de um conjunto amplo de informação do desempenho do genótipo envolvendo médias, máximos, mínimos, variância e toda ordem de informação possível de ser direta ou indiretamente mensurada. Assim, ao contrário dos métodos estatísticos que resumem as informações ou realizam a simplificação estrutural dos dados, as redes neurais, à semelhança do cérebro humano, captam toda informação disponível para gerar um critério de tomada de decisão. Assim, este trabalho foi realizado com o intuito de utilizar as redes neurais para melhorar a acurácia na predição de valores e ganhos genéticos, através de uma discussão de seus fundamentos teóricos e utilização de dados simulados, com mesma caracterização em termos de média, herdabilidade e coeficiente de variação dos dados reais, fornecendo um método alternativo para identificação de genótipos superiores.