Aplicações avançadas de aprendizado de máquina e ferramentas de análise de imagem para classificação e fenotipagem de sementes
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
Fitotecnia |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://locus.ufv.br//handle/123456789/32161 https://doi.org/10.47328/ufvbbt.2024.038 |
Resumo: | As tecnologias ópticas modernas, complementadas por algoritmos de inteligência artificial, estão revolucionando a análise de amostras biológicas na agricultura, particularmente na avaliação da qualidade de sementes. Por meio da integração de técnicas sofisticadas de análise de imagens, incluindo imagens RGB, raios X e imageamento multiespectral, esta pesquisa introduziu novas abordagens e ferramentas inovadoras. Dentre as ferramentas estão o Ilastik, que proporciona a utilização do aprendizado de máquina interativo para classificação de sementes e plântulas de soja, e a IJCropSeed, macro projetada para permitir a análise de imagens de raios X de sementes de uma variedade de culturas agrícolas. Além disso, foram desenvolvidos e testados modelos de aprendizado de máquina, abrangendo tanto métodos interativos quanto tradicionais. Estes modelos demonstraram uma eficácia notável, alcançando níveis de precisão superiores a 90%, o que representa um marco significativo no campo. No que se refere ao uso do imageamento multiespectral, com ênfase em comprimentos de onda específicos, foi observada alta consistência nos modelos desenvolvidos para avaliar o potencial fisiológico dos lotes de semente, considerando diferentes genótipos, lotes e safras. Além disso, a pesquisa destacou correlações entre os aspectos físicos das sementes, seus componentes espectrais e o desempenho fisiológico subsequente. Estes avanços tecnológicos apresentam uma nova oportunidade de ganho eficiência e qualidade operacional na classificação do potencial fisiológico das sementes e a predição do vigor das plântulas. O uso dessas abordagens otimiza a análise, tornando-a rápida, objetiva e altamente eficaz, e destaca a correlação entre aspectos físicos, componentes espectrais e o desempenho fisiológico das sementes. Palavras-chave: Imagens RGB. Imagens multiespectrais. Imagens de raios X. ImageJ. Aprendizado de máquina. |