Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Barbosa, Eduardo Campana |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/7179
|
Resumo: |
A presente dissertação teve como objetivo principal demonstrar um enfoque Bayesiano para a metodologia Choice-Based Conjoint Analysis (CBCA). Apresenta-se no texto uma ampla revisão sobre a CBCA (Capítulo 1), sobre o modelo Logit Multinomial [desenvolvimento do modelo, procedimentos de estimação de parâmetros, probabilidades e razões de escolha (Capítulo 2)] e sobre o enfoque de estimação Bayesiano [distribuição a priori utilizada, aproximação de Laplace para a função de verossimilhança, distribuições a posteriori e detalhes sobre o algoritmo MCMC empregado (Capítulo 3)]. No Capítulo 4 apresenta-se um exemplo hipotético, no intuito de demonstrar os resultados e inferências que podem ser obtidos por meio desta recente abordagem (Bayesiana), sendo também apresentados os resultados do enfoque Frequentista. O tratamento em estudo foi um tipo de refrigerante e avaliou-se o efeito de três fatores (A, B e C) na intenção de compra de 96 consumidores, por meio de dados simulados. As análises estatísticas foram conduzidas no software livre R, cujos scripts encontram-se disponibilizados nos apêndices desta dissertação. Concluiu-se que a abordagem Bayesiana para CBCA apresentou resultados interessantes e satisfatórios, com estimativas similares às Frequentistas e mostrando-se uma alternativa metodológica viável para os estudos de CBCA. Adicionalmente, a abordagem proposta possibilitou ainda ao pesquisador construir intervalos de credibilidade (percentis das distribuições a posteriori) para as probabilidades e razões de escolha, no intuito de comparar estas quantidades ou testar hipóteses sobre estas. Quanto aos resultados práticos, a maior probabilidade de escolha estava associada ao tratamento 4, composto pelo nível do fator A, nível do fator B e nível do fator C. |