Modelagem do crescimento em nível de árvores individuais utilizando redes neurais e autômatos celulares

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Castro, Renato Vinícius Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de
Mestrado em Ciência Florestal
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/3070
Resumo: Modelar de maneira precisa o crescimento e a produção de povoamentos é importante para um melhor gerenciamento dos recursos florestais. Como o manejo tem demandado cada vez mais detalhes acerca do crescimento e dinâmica dos povoamentos, principalmente aqueles destinados à produção de madeira de alta qualidade ou a multiprodutos, modelos em nível de distribuição diamétrica e em nível de árvores individuais têm sido cada vez mais demandados. Assim sendo, este trabalho teve por objetivo modelar o crescimento e a produção de povoamentos de eucalipto, em nível de árvores individuais, utilizando regressão, redes neurais artificiais (RNA) e Autômatos Celulares (AC). Dados de parcelas permanentes foram empregados para ajuste de equações para predizer o crescimento de variáveis dendrométricas (diâmetro e altura) e probabilidade de mortalidade das árvores, bem como para o treinamento das RNA para estas mesmas variáveis. As estimativas obtidas por meio de RNA foram mais precisas quando comparadas àquelas obtidas por modelos de regressão. As melhores redes, juntamente com uma arquitetura de AC, foram utilizadas para validação do modelo, empregando dados independentes daqueles utilizados no ajuste dos modelos de regressão e treinamento das RNA. Projetando-se a estrutura dessas parcelas independentes (diâmetro, altura e mortalidade das árvores) de 24 meses até 72 meses, observou-se que as RNA e a estrutura de AC forneceram estimativas precisas em nível de árvores individuais, classes de diâmetro e por unidade de área (hectares).