Modelagem de árvore individual para uma Floresta Estacional Semidecidual utilizando redes neurais
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de Doutorado em Ciência Florestal UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/584 |
Resumo: | Este estudo teve como objetivos desenvolver um modelo completo em nível de árvore individual para um fragmento de Floresta Estacional Semidecidual Montana utilizando redes neurais artificiais (RNA) e validar a sua aplicação. Dados provenientes de dez parcelas permanentes em um fragmento florestal de 17 ha no município de Viçosa, MG, em estágio médio de sucessão ecológica, monitoradas durante 14 anos (1994, 1997, 2000, 2004 e 2008) foram utilizados para este propósito. O conjunto de dados foi dividido aleatoriamente em dois grupos: 1) grupo de treinamento das redes, composto por seis parcelas e totalizando 3.556 casos nas cinco medições, sendo observados 231 casos de mortalidade e 238 casos de ingresso, e 2) grupo de validação do modelo, composto por quatro parcelas, totalizando 2.062 casos, sendo observados 181 casos de mortalidade e 146 casos de ingresso. O trabalho foi dividido em quantro capítulos onde, no capítulo I, foram avaliados diferentes índices de competição independentes, dependentes e semi-independentes da distância, sendo selecionados aqueles melhores para os estudos de crescimento e mortalidade nos capítulos posteriores. Nos capítulos II e III foram avaliados e comparados diferentes arquiteturas e tipos de redes neurais para estimativa da mortalidade regular das árvores, bem como para projeção do diâmetro, altura total e do fuste. No capítulo IV, realizou-se a validação das redes empregando-se o conjunto de dados independentes. Além das redes selecionadas considerou-se a taxa média de ingresso em cada período de medição, no primeiro grupo de dados, na projeção da estrutura da floresta (validação). Após as análises, observou-se que, de maneira geral, os índices de competição foram correlacionados com o crescimento e probabilidade de mortalidade das árvores. Verificou-se, também, a eficiência das redes neurais na estimação da mortalidade das árvores e para a projeção do crescimento, sendo obtidas estimativas precisas. Na validação, projetou-se a mortalidade, o crescimento e o ingresso da primeira medição (1994) até o ano de 2008, os quais foram comparados aos valores observados. O modelo em nível de árvore individual foi eficiente na simulação do crescimento e produção florestal em todos os níveis de detalhamento (povoamento total, distribuição diamétrica e de altura e em nível de árvore individual). Os resultados confirmaram o potencial de utilização de modelos em nível de árvore individual por meio de redes neurais artificiais em florestas naturais estruturalmente complexas, como é o caso da Floresta Estacional Semidecidual Montana. |