Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Silva, Simone Aparecida da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://locus.ufv.br//handle/123456789/27984
|
Resumo: |
O estudo sobre as interseções de Curvas Algébricas, nos leva ao Teorema de Bézout, que versa sobre o número de pontos de interseção entre duas curvas. Para melhor compreender este importante teorema, estudaremos sobre a Geometria Algébrica Clássica que envolve a Geometria Analı́tica e a Geometria Projetiva. Além do plano cartesiano e complexo, trataremos também do plano projetivo que contém os pontos finitos e os pontos no infinito. Definiremos curvas algébricas e curvas projetivas chegando assim ao objetivo do nosso trabalho que é a demonstração do Teorema de Bézout. Palavras-chave: Interseção de curvas. Curva algébrica. Teorema de Bézout. Geometria algébrica. Geometria analı́tica. |