Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Pereira, Geraldo Magela da Cruz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://locus.ufv.br//handle/123456789/28618
|
Resumo: |
Dados censurados são encontrados em diversas características de interesse no melhoramento animal, como por exemplo, tempo ao abate em suínos, idade ao primeiro parto em bovinos, resistência à doença em peixes. A modelagem destas características é comumente realizada via modelos lineares, que podem ou não considerar a natureza censurada dos dados. Os modelos G-BLUP, RR-BLUP e ssGBLUP são exemplos de modelos que não consideram a presença de observações incompletas nos dados. A classe de modelos bayesianos BGLR (Bayesian Generalized Linear Regression), possibilita a modelagem de fenótipos censurados. Recentemente tem surgido o interesse na utilização de modelos de sobrevivência para a análise de dados genômicos com observações censuradas. Neste contexto, estudos que avaliem a utilização de medidas mais adequadas para o cálculo da acurácia e do viés, bem como a utilização de métodos de aprendizado de máquina de sobrevivência, não foram encontrados na literatura consultada. O objetivo geral deste estudo foi contribuir para a discussão acerca das metodologias mais indicadas para a comparação de modelos, e para a realização de predições em estudos de seleção genômica com dados censurados simulados e reais de juvenis de dourada (Sparus aurata). As metodologias propostas foram comparadas com as metodologias tradicionalmente utilizadas em genômica. Para os dados simulados, foram comparadas as medidas de correlação: de Pearson (CP), maximal (CM) e de Pearson para dados censurados (CPC); e de viés: regressão linear simples e regressão Tobit. A predição de valores genéticos genômicos foi realizada pelos modelos misto de Cox e normal truncado, considerando diferentes cenários. Os resultados mostraram, que principalmente no cenário com herdabilidade de QTL igual à 0,27, as medidas CM e/ou CPC, mostraram-se estatisticamente superiores à CP. O coeficiente de regressão associado aos efeitos marginais para dados censurados e não censurados apresentou valores semelhantes aos obtidos pela regressão linear. Do ponto de vista estatístico, as metodologias propostas são mais adequadas para a análise de dados censurados, visto que em sua formulação, elas consideram a presença de fenótipos não observados. Para os dados reais, foi considerada a utilização dos métodos Random Survival Forest (RSF) e Gradient Boosting Machine e Análise de Componentes Principais Supervisionados em seleção genômica, sendo estes comparados ao método Regressão Ridge Bayesiana (BRR). Os modelos foram comparados via validação cruzada 7-fold, pelas medidas Area Under the Curve, Brier Score, correlação de Spearman, e pela proporção de indivíduos selecionados, e também pela localização de SNPs ou grupos de ligação relevantes. Os resultados mostraram que, os modelos RSF e BRR, apresentaram valores estatisticamente iguais de habilidade preditiva. O rank dos Top-40 SNPs obtido pela RSF apresentou maior interseção com os ranks obtidos pelos métodos BRR e modelo misto de Cox. A maior correlação de Spearman entre os GEBVs estimados via BRR e as probabilidades de sobrevivência, foi obtida pela RSF. A utilização de subconjuntos de SNPs selecionados pelos métodos propostos, não resultou em diferenças significativas na habilidade preditiva do modelo misto de Cox. Por fim, nota-se que o método RSF, apresenta um desempenho semelhante ao da BRR, sendo possível sua aplicação em estudos genômicos. Palavras-chave: Seleção genômica ampla. Valores genéticos genômicos. Dados censurados. Modelo misto de Cox. Aprendizado de máquina. |