Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Rodrigues, Anderson Armando de Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Viçosa
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.locus.ufv.br/handle/123456789/11428
|
Resumo: |
Este estudo aborda novas construções de emparelhamentos de arestas generalizados de polígonos hiperbólicos associados a tesselacão hiperbólica {8g - 4, 4} (Capítulo 4). Aos quais, mediante o Teorema de Poincaré construímos superfícies compactas pelo quociente H2/ Γ onde H2 e o plano hiperbólico, Γ é um grupo discreto de isometrias gerado pelos emparelhamentos e g ≥ 2 representa o gênero da superfície. Essa tesselacão apresenta propriedades geométricas interessantes, e os resultados ligados a essa teoria têm aplicações na teoria de códigos. Um desses emparelhamentos é obtido ao unir o emparelhamento Φ 12β−16 que construímos associado a tesselacão {12β - 16,4} com emparelhamentos Φ 12η−8 e Φ 12μ−12 construídos em [19] associados às tesselações {12η −8, 4} e {12μ−12, 4}. Construímos quatro maneiras distintas de emparelhar as arestas do polígono hiperbólico P 8g−4, com 8g−4 arestas, associados a tesselacão hiperbólica regular {8g-4, 4} e quatro casos particulares de emparelhar as arestas de P 8g−4, onde em três desses casos g ≥ 3 é ímpar e em um caso g ≥ 4 é par. |