Modelagem de floresta inequiânea: redes neurais artificiais aplicadas em uma floresta manejada no leste da Amazônia

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Reis, Leonardo Pequeno
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/9882
Resumo: A problemática em relação a esse fato é a possível surperexploração de poucas espécies que compõem a maior parte da intensidade de corte, quando os planos de manejo florestal não estimam a recuperação da floresta ao longo do tempo. Assim, as decisões sobre a intensidade e o ciclo de corte adequado não apresentam fundamentos baseados na dinâmica florestal. Isso poderia ser contornado por meio do emprego de modelos de crescimento e produção apropriados para a prognose dos estoques futuros, utilizando a dinâmica florestal como base na parametrização. Esses modelos também podem ser usados para avaliar a dinâmica florestal e perturbações naturais. Por tanto, novas técnicas de modelagem em florestas tropicais são necessárias para garantir a sustentabilidade dessa atividade. Nesse cenário, o objetivo foi modelar uma floresta colhida seletivamente, há mais de 30 anos, utilizando Redes Neurais Artificiais (RNA), para subsidiar decisões silviculturais sobre o manejo florestal na Amazônia. Para atender a esse objetivo, a tese foi dividida em quatro artigos. Em todas as modelagens foram utilizados os dados do campo experimental localizado na Floresta Nacional do Tapajós, à altura do Km 67 (55° 00’ W, 2° 45’ S) da Rodovia BR- 163, Cuiabá-Santarém, no município de Belterra, estado do Pará, Brasil. Predomina na área o bioma Amazônia e a tipologia Floresta Ombrófila Densa de terra firme. Em 1979, foi realizada a colheita seletiva com intensidade de 72,5 m 3 ha -1 , em uma área de 64 ha. Em 1981, foram instaladas aleatoriamente e inventariadas 36 parcelas permanentes (50 m x 50 m). Nove medições sucessivas foram realizadas na área, em 1982, 1983, 1985, 1987, 1992, 1997, 2007, 2010 e 2012. Para avaliar a modelagem foram utilizadas as estatísticas de correlação (ryŷ ), raiz quadrada do erro quadrático médio (RQEQM) e o coeficiente Kappa (usado para avaliar a saída categórica de mortalidade e sobrevivência). Também foi analisada a dispersão dos erros percentuais (Erro %). No primeiro artigo o objetivo foi estimar o recrutamento após a colheita de madeira, empregando redes neurais artificiais. A modelagem do recrutamento com RNA seguiu a tendência dos dados observados ao longo dos 31 anos, sendo obtido com a melhor rede um RQEQM de 35,6%e ryŷ de 0,89. No segundo artigo o objetivo foi modelar o crescimento das árvores individuais em uma floresta manejada na Amazônia, utilizando redes neurais artificiais. Todas as RNA, com índice de competição semi-independentes da distância e sem índice, apresentaram correlação acima de 99% e RQEQM menor que 11%. A modelagem do crescimento com RNA pode ser usada com precisão para auxiliar no manejo de florestas tropicais por seguir a tendência dos dados observados. No terceiro artigo o objetivo foi estimar a sobrevivência e a mortalidade de árvores individuais em floresta colhida seletivamente, utilizando redes neurais artificiais. O coeficiente Kappa geral ficou abaixo de 8% em todas as RNA (classificação “pobre”), mas todas as redes ficaram acima de 55% na classificação da sobrevivência (classificação “boa”). A RNA estimou com maior precisão a sobrevivência individual de árvores, mas isso não ocorreu com a mortalidade, que é um evento mais raro que a sobrevivência. No quarto artigo o objetivo foi empregar autômatos celulares com regra de evolução em redes neurais artificiais, para projetar a distribuição diamétrica. Todas as RNA apresentaram a correlação acima de 99% e RQEQM abaixo de 17%. A projeção em todos os períodos analisados não apresentou diferença estatística a 5% de significância em relação à observada, demonstrando que a projeção seguiu a tendência da dinâmica da distribuição diamétrica. A modelagem utilizando redes neurais artificiais para prognosticar o recrutamento, o crescimento, a sobrevivência e a distribuição diamétrica de floresta tropical colhida seletivamente seguiu a tendência dos dados observados, com elevada precisão no recrutamento, no crescimento individual de árvores, na sobrevivência e na distribuição diamétrica, e pode ser utilizada para subsidiar as decisões silviculturais no manejo florestal sustentável na Amazônia.