Avaliação de agrupamentos em mistura de variáveis
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Estatística Aplicada e Biometria Mestrado em Estatística Aplicada e Biometria UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4065 |
Resumo: | A análise de agrupamento é amplamente utilizada em muitas áreas de pesquisa a fim de se reconhecer uma estrutura padrão de variabilidade entre os indivíduos ou objetos estudados, classificando-os em grupos homogêneos. No entanto, dos trabalhos publicados, a maioria deles versam apenas sobre variáveis numéricas, excluindo da análise, as informações contidas nas variáveis categóricas. Dessa forma, esse trabalho teve o objetivo de avaliar várias formas de agrupamentos em um banco de dados simulado e também de disponibilizar uma rotina em R do algoritmo kprotótipos e uma rotina para se realizar agrupamentos hierárquicos. As medidas de distâncias avaliadas foram: euclidiana, euclidiana ao quadrado, euclidiana média, mahalanobis, manhattan, medidas combinadas e a de gower. Quanto aos algoritmos de agrupamento hierárquicos utilizados foram: vizinho mais próximo, vizinho mais distante, UPGMA e ward . Os algoritmos não-hierárquicos foram: k-médias e o kprotótipos. Os resultados obtidos foram confrontados entre si e concluiu-se que os algoritmos não-hierárquicos foram superiores aos hierárquicos e que incluir variáveis categóricas na análise é viável. |