Comparação e escolha de agrupamentos: uma proposta utilizando a entropia

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Souza, Estevão Freitas de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-13092007-145328/
Resumo: A análise de agrupamentos (cluster analysis) é o conjunto de ferramentas estatísticas de análise multivariada para encontrar ou revelar a existência de grupos em uma amostra. A literatura apresenta muitos métodos para particionar um conjunto de dados. Porém, ao utilizá-los, o pesquisador muitas vezes se depara com o problema de decidir em quantos grupos deverá ser feita essa divisão, bem como comparar agrupamentos obtidos por diferentes métodos estabelecendo quão semelhantes eles são. Neste trabalho é feita uma revisão dos principais métodos de comparação de agrupamentos e é apresentada uma nova técnica para a escolha do número ideal de grupos, baseada na diferença de entropias. Afim de avaliá-la, estudos de simulação foram realizados comparando-a com outras técnicas conhecidas: a estatística Gap e a silhueta média. Os resultados indicaram que a nova proposta é tão ou mais eficiente que as demais, no sentido de encontrar o número correto de grupos. Além disso, ela também é computacionalmente mais rápida e de simples implementação. Duas aplicações a dados reais são apresentadas, ambas na área de genética.