Rhizospheric microbial communities of plants coexisting under different edaphic conditions

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Monteiro, Larissa Cassemiro Pacheco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
RNA
Link de acesso: https://locus.ufv.br//handle/123456789/27939
Resumo: Plants exert strong influence on soil microrganisms through root exudation. When two plant species are growing together, the resulting rhizospheric microbial communities differs from that observed in the respective monocultures. This new rhizobiome can directly affect the adaptability and the ecological interactions of the plant species living in coexistence. In addition, soil edaphic conditions such as different levels of fertility and changes in the electrical conductivity, also promote changes in the rhizobiome and, consequently, in the interactions established by the plants in coexistence. Thus, the aims of this work were: I) to evaluate the ecological relationships and the microbial taxons present in the rhizosphere of weeds in monoculture and coexistence; II) to evaluate how soil fertilization affects the ecological interactions between Zea mays and weeds and their associations with rhizosphere microroganisms and III) to evaluate the outcomes of Zea mays-weed interactions as a function of soil EC associated with changes in the structure of the rhizosphere microbial communities. To achieve the first objective, an experiment was conducted in a greenhouse using three weed species, Ageratum conyzoides, Ipomoea ramosissima, and Bidens pilosa that were grown in monoculture and in coexistence. The total soil DNA was extracted and sequenced via the Illumina MiSeq platform using primers specific for the 16S rRNA of bacteria and archaea and the ITS region of fungi. Competition interactions were observed between all tested weed combinations. Differences in the bacterial diversity of competing weeds were observed. For some specific bacterial groups, such as the genera Bdellovibrio, Flexibacter and Domibacillus, and the fungal phylum Ascomycota, smaller changes in abundance were recorded. To achieve the second objective, another experiment was conducted in a greenhouse with two weed species Amaranthus viridis and Bidens pilosa and Zea mays, in monoculture and in coexistence, submitted to two different fertility managements. The total DNA of the soil was also extracted and the sequencing carried out as in the previous experiment. Maize showed greater competitive ability than weeds under natural soil fertility, no difference in competiveness was observed among the plants tested after soil fertilization. Bacterial diversity was negatively affected by fertility and specific taxa were differently affected by the two factors evaluated, plant coexistence and soil fertilization. The fungal community did not change at α and β diversity in any of the samples analyzed. To achieve the third objective, an experiment similar to the previous one was conducted in a greenhouse, adopting distinct levels of soil electrical conductivity (EC). For the interaction between maize and B. pilosa, the ecological relations between these plants changed from competition to facilitation as EC was increased. Increases in soil EC caused significant changes in bacterial diversity and in the structure and composition of bacterial and fungal taxa. These changes were associated to changes in the outcome of mayze-weed interactions. Keywords: Zea mays. Ageratum conizoydes. Amaranthus viridis. Ipomoea ramosissima. Bidens pilosa. Plant Coexistence. Microbial Diversity. llumina MiSeq sequencing. 16S rRNA and ITS. Fertility. Electrical Conductivity.