Número mínimo de pesagens para estimação dos parâmetros de curvas de crescimento para ovinos de corte cruzados
Ano de defesa: | 2011 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Estatística Aplicada e Biometria Mestrado em Estatística Aplicada e Biometria UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4036 |
Resumo: | O objetivo deste trabalho foi verificar o efeito de restrições no conjunto de dados quanto ao número mínimo de pesagens por animal sobre a estimação de parâmetros de modelos não-lineares de curvas de crescimento para ovinos cruzados. Utilizou-se dados de pesos médios por idade e pesos individuais por idade de 74 animais mestiços, do cruzamento Texel x Santa Inês criados na região nordeste para estimar os parâmetros das curvas de crescimento. Foram utilizadas 7 estruturas de dados com restrição de no mínimo 5, 6, 7, 8, 9 ou 10 pesagens por animal e sem restrição. Os modelos Brody, von Bertalanffy, Logístico e Gompertz foram ajustados aos dados de peso-idade. A qualidade de ajuste dos modelos em função da restrição nos dados foi avaliada pelo coeficiente de determinação ajustado (R2 aj), Erro de Predição Médio (EPM) e o Quadrado Médio do Resíduo (QMR). Técnicas usuais de diagnóstico, como pontos de alavanca, pontos aberrantes e medidas influentes foram utilizadas para a identificação de pontos atípicos. Todas as estruturas de dados apresentaram estimativas para o peso adulto, taxa de maturidade, taxa de crescimento instantâneo, taxa de crescimento instantâneo relativo e ponto de inflexão muito próximos e condizentes com a literatura. Como os valores de R2 aj, EPM e QMR foram próximos, conclui-se que com ou sem restrição, a qualidade de ajuste foi muito similar. Portanto, a utilização de dados com grande variação no número de pesagens por animal (de 4 a 13 pesagens) não comprometeu a qualidade de ajuste dos modelos. Pode-se concluir, também, que é possível obter boa qualidade de ajuste mesmo para conjunto de dados com poucos animais, desde que estes apresentem maior freqüência de pesagens. |