Métodos eficientes para colapsagem e seleção de SNPs raros em dados familiares

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Noli, Ana Fernanda
Orientador(a): Zuanetti, Daiane Aparecida lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
NGS
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/20436
Resumo: The present work presents methods for identifying rare variants, which consist of genetic variations that occur with low frequency in the population, for understanding human health and how next-generation sequencing (NGS) has enabled a more comprehensive assessment of individuals' genetic variation. The detection of genomic variation is performed using SNP markers (Single Nucleotide Polymorphism). The linear mixed model (LMM) approach stands out in these studies for encompassing both fixed and random effects, and the LASSO (Least Absolute Shrinkage and Selection Operator) method is used for variable selection. This work also describes the most recent approaches for GWAS (genome-wide association studies) and NGS studies that include family data and how rare variants play an important role in the genetic architecture of complex disorders. Finally, the main methodologies used in genomic studies based on collapsing are discussed, as well as the need to bring new techniques or combine them to better understand the influence of rare variants on complex diseases.