Utilização de rede neural artificial para controle de variáveis que causam encanoamento diagonal de papéis, em máquina industrial de papel cartão

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Schneid, Guinter Neutzling
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
BR
Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de
Mestrado em Ciência Florestal
UFV
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://locus.ufv.br/handle/123456789/3155
Resumo: A estabilidade dimensional do papel pode sofrer alterações devido a troca de umidade do meio, liberando o stress latente adquirido no processo de fabricação. Um dos resultados dessa liberação de tensões é o encanoamento diagonal, ou também conhecido por twist. Na indústria de papel, as medições laboratoriais são importantes para garantir a qualidade final do material entregue ao cliente. Particularmente na medição do encanoamento diagonal, as amostragens são feitas no final de cada rolo jumbo, demandando tempo para eventuais correções, por parte da operação. Com essas pressuposições, este estudo tem por objetivo realizar uma análise de sensibilidade das diferentes variáveis de entrada de uma máquina industrial de papel, juntamente com algumas medições laboratoriais, relacionadas à propriedade do papel denominada de encanoamento diagonal e propor redes neurais artificiais para, no futuro, serem usadas como um sensor virtual no processo de produção industrial. Inicialmente foi feito um levantamento do histórico de produção para observar os produtos com as maiores perdas de qualidade. A partir disso, correlacionados com os pontos críticos do perfil de medição na direção CD, foram confeccionadas três redes neurais artificiais, do tipo Multi-Layer Perceptron (MLP), para predizer três setores do perfil da máquina de papel, sendo, o lado do comando (LC), meio de máquina (M) e lado do acionamento (LA). Encontramos algumas alterações na ordem em que as variáveis correlacionavam com o encanoamento diagonal. A partir da análise de sensibilidade, foi revelado, que a variável mais importante e sensível, respectivamente para o lado comando, meio e acionamento da máquina, foram fluxo total da caixa de entrada da camada cobertura, pressão de vapor no 6o grupo e fluxo de massa lateral da camada base do papel cartão (Module Edge). Os coeficientes de correlação para as RNA s foram de 0,426; 0,557 e 0,597, respectivamente, nesta ordem, para os setores do LC, M e LA. Portanto, nos permitindo concluir que os resultados indicam que os modelos são aptos para representar o processo.