Efeito de mobilidade no limiar epidêmico da dinâmica SIS em redes livres de escala

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Diogo Henrique da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/9780
Resumo: Neste trabalho foram realizados estudos analíticos e computacionais do modelo Suscetível-Infectado-Suscetível (SIS) incluindo o processo de difusão de agentes infectados em redes complexas com distribuição de grau em lei de potência, P (k) ∼ k −γ . Consideramos casos em que a difusão é simples ou preferencial. No modelo, cada vértice infectado da rede transmite a infecção para um de seus vizinhos com uma taxa constante λ e torna-se espontaneamente suscetível com uma taxa μ. O processo de difusão simples corresponde a uma troca de um agente infectado localizado em um vértice i com um agente localizado em um vértice j escolhido, aleatoriamente, em sua vizinhança. Na difusão preferencial, esta troca ocorre, preferencialmente, com o vértice de maior grau na vizinhança do vértice contendo o agente infectado. A análise teórica realizada com a aproximação de campo médio HMF (Heterogenous Mean Field ) mostra que para a difusão simples o limiar epidêmico independe do coeficiente de difusão, d, para qualquer valor de γ. Além disso, os resultados conhecidos para o SIS são mantidos, sendo que para γ > 3 temos um limiar finito. A teoria QMF (Quenched Mean field ) prevê o mesmo comportamento da teoria HMF no limite termodinâmico para γ < 2.5. Quando γ > 2.5 a teoria QMF prevê que o limiar se anula no limite termodinâmico. O decaimento do limiar com tamanho da rede difere daquele previsto para o modelo SIS na ausência de difusão. As diferenças entre as previsões HMF e QMF são mais evidentes quando mantemos o tamanho da rede fixo e variamos d. Nela observamos uma redução do valor do limiar epidêmico para d baixo e um aumento para d elevado na teoria QMF. Foi observado um bom acordo da teoria QMF com as simulações. Também estendemos a teoria BCPS (Boguña, Castellano e Pastor-Satorras) ao modelo incluindo difusão simples, considerando a dinâmica em um hub aproximada por um grafo estrela modificado. Ela nos fornece uma boa descrição qualitativa dos resultados obtidos. Na difusão preferencial temos um bom acordo entre as teorias HMF, QMF e simulações sendo verificado que a difusão leva a um limiar correspondente ao de uma estrela, para γ < 3. Vimos que para γ > 2.5, a transição de fase é destruída devido a ausência de surtos epidêmicos nos hub, eliminando as flutuações na densidade de vértices infectados.