Nanocompósitos de pectina reforçados com nanocristais de celulose para utilização como revestimentos para morangos
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Química Ciências Exatas e da Terra UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/17438 https://doi.org/10.14393/ufu.di.2015.403 |
Resumo: | In this work, the effects of the incorporation were valued of cellulose nanocrystals of the wood pulp of Eucalyptus urograndis from three different times of acid hydrolysis (20, 50 and 80 minutes) in order to determine which of three types of nanocrystals would be most appropriate in the reinforcement function for the matrix of apple pectin. The films were characterized using dynamic mechanical thermal analysis to choose the best reinforcement element in terms of improvement in mechanical properties. After choosing the appropriate filler, new nanocomposites were produced with the percentages of 1, 2, 4 and 8% w/w in relative to the final mass of 0.5 g of each nanocomposite film. The films were manufactured by casting method, in the presence and absence of glycerol as plasticizer in the formulations. These nanocomposite films were characterized using the techniques of water vapor permeability and gases, with the aim of evaluating the barrier properties, contact angle with water in order to verify the hydrophillicity of the material, and dynamic mechanical thermal analysis for evaluating mechanical properties. The nanocrystals extracted with fifty minutes hydrolysis (NC50) were the ones that stood out in terms of improvement in mechanical properties, due to the significant increase in the values of E\'. The nanocomposite films acted as a barrier to passage of gases due to its dense structure, without pores and homogeneous. The formulations of the nanocomposite films with 8% w/w of cellulose nanocrystals in the absence and presence of glycerol were used for coating of strawberries, the comparatives were made with poly (vinyl chloride) film, in relation to weight loss (%) and texture analysis in terms of Puncture Strength the film and Puncture deformation suffered by them. The results showed that the nanocomposite films with glycerol and poly (vinyl chloride) showed comparable values in terms of weight loss, and the glycerol incorporation provided a gain in flexibility of these films. Additionally this same formulation was used in the formulations of the edible coatings and the incorporation of essential oil of lemon grass in the formulations, in order to study the antifungal potential of this compound for coating strawberries. The formulation (18.20 mL of suspension the cellulose nanocrystals fifty minutes, NC50, 230 mL of suspension of apple pectin, 0.50 mL glycerol and 0.12 mL of essential oil of lemon grass) whose processes of immersion were performed twice. This formulation, was the one that stood out in terms of reduction of weight loss, around 5% for the strawberry coated with this formulation and on the other hand 12% for uncoated, analyzed in the time of two days, time that these fruits should be consumed when fresh and stored under satisfactory conditions. So with this work it was observed that the addition of cellulose nanocrystals acted as reinforcement elements for the matrix in the study, these films are hydrophilic and acted as a barrier to passage of gases. The addition of glycerol causes changes in mechanical, thermal and barrier properties of the nanocomposites. According to applicability tests the same base formulation can be used in two different perspectives: coating strawberries in the form of films and as ingredients for preparing the edible coatings to extend shelf life of these fruits which have an extremely short life-time due to rapid metabolism thereof. |