Reflexão de Andreev cruzada via dubleto de Autler-Townes em uma junção ponto quântico - supercondutor
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Física |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/20352 http://dx.doi.org/10.14393/ufu.te.2018.3 |
Resumo: | The theoretical and experimental knowledge accumulated in the last decades on semiconductors quantum dots (QDs) impulses the emergence of many current proposals for using them in hybrid systems. The ability to control their optoelectronic properties, as well as the control of fabrication techniques, made them the perfect candidates to compose junctions with superconductors (SCs), whose individual characteristics are also remarkable. These junctions can be simple, with a single QD coupled to a SC, or multiple: a connection of two superconducting terminals through a QD (a Josephson-like junction) and the junction of two QDs through a SC. The latter is known as a Cooper-pairs splitter, a device suggested as a source of entangled particles, for which is required the occurrence of crossed Andreev reflection (CAR) on the interfaces of the junction. Junctions of QDs with SCs and with topological SCs have also been proposed in two-level systems as qubits for both trivial and topological quantum computation. Despite the study of QD-SC junctions being currently in evidence, the literature review shows that the analysis of transient regime was little explored. Therefore, we address in this work the topic of time-dependent charge transport in a QD-SC-QD junction. By using non-equilibrium Green functions techniques, particularly, the Kadanoff-Baym formalism, we write down a set of coupled differential equations, which is numerically solved. Examining the Rabi oscillations that appears on the time evolution of electric current and QDs occupations, we were able to identify signatures of the scattering mechanisms through out the junction, i. e., direct tunnelling and CAR. Additionally, we propose to use this system as a photodiode, with the aid of a laser beam over one of the QDs. The results show the splitting of the optically excited states in Autler- Townes doublets, for a weak coupling between the QDs. Hence, CAR mediated by the applied laser was observed through the energy levels that compose the doublet. The results depend also with the source-drain potential applied to the device, which can be high bias (HB) or zero bias (ZB). The present work is the first to analyse the splitting of Cooper pairs assisted by photons in a QD-SC-QD junction, in nonequilibrium regime. Although the experimental results are still sparse, the inclusion of a SC in a QD hybrid photodiode allows new mechanisms of photocurrent formation, creating possibilities in future applications. |