Ferramenta para avaliação neurológica em pacientes com hipertensão intracraniana

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Silva, Gustavo Moreira da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Elétrica
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14584
https://doi.org/10.14393/ufu.di.2014.483
Resumo: The Intracranial hypertension (ICH) is a neurological condition that primarily affects patients with Traumatic Brain Injury (TBI), cerebrovascular accident (CVA) and hydrocephalus. Currently, the best treatment of this condition requires continuous brain monitoring of clinical parameters associated with cerebral perfusion. In this context, two variables are highly relevant in clinical evaluations: The Intracranial Pressure (ICP) and the Mean Arterial Pressure (MAP). The aim of this work is to develop a computer program that provides information on the waveform of the PIC and the cerebral perfusion. The system performs a digital signal processing of the PIC which is not found in multiparameter monitors that are commonly used in intracranial monitoring. The system interface displays the following parameters: ICP, MAP, Cerebral Perfusion Pressure (CPP), Cerebral vasoreactivity index (PRx) and evaluates the stationarity of the signal from PIC. Moreover, the system still detects waves Lundberg (A and B) and estimates the characteristics of stationarity and vasoreactivity. To evaluate the usability of the system a case study is conducted, in addition to extracting features of stationarity curve intracranial pressure. The evaluation of characteristics allowed us to observe some trends that may compose the HIC prediction tools.