Classificação automática de cardiopatias baseada em eletrocardiograma

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Bueno, Nina Maria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Elétrica
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14594
Resumo: This work is dedicated to study of the recognition and classification of cardiac disease, diagnosised through the electrocardiogram ECG. This examination is normally used in heart medical center, emergency, intensive therapy, and with complement diagnosis in heart disease as: acute myocardium infarction, bundle block branches, hypertrophy and others. The software was developed for support to the model, with focus on extraction of ECG signal characteristics, and an artificial neural network for recognition of diseases. For extraction these characteristics, we have used a auto-regressive model, AR, with the algorithm least mean square LMS, to minimize the minimum error. The neural network, with architecture multilayer perceptron and back propagation algorithm of training, was chosen for the recognition of the standards. The method was showed efficient.