Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
BAIA, Alexandre Farias
|
Orientador(a): |
CASTRO, Adriana Rosa Garcez
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Pará
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
Departamento: |
Instituto de Tecnologia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufpa.br/jspui/handle/2011/11251
|
Resumo: |
Este trabalho apresenta a proposta de dois sistemas automáticos para auxílio à detecção de anomalias em batimentos cardíacos e apoio à decisão médica. Os sistemas foram desenvolvidos para a identificação de arritmia rítmica e arritmias morfológicas a partir de sinais obtidos de um Eletrocardiograma (ECG). Ambos os sistemas são baseados em uma estrutura competitiva de Redes Neurais Convolucionais (CNN) Auto-associativas, sendo que cada rede foi treinada para reconstrução dos sinais apresentados na sua entrada. Para o caso do classificador rítmico, o sistema foi desenvolvido a partir do uso dos sinais do ECG, sem passar por um processo de extração de características, e para o caso do classificador morfológico o sistema se baseou no complexo QRS extraído do sinal de ECG. Para desenvolvimento e teste dos sistemas foi utilizada a base de dados MIT-BIH Arrhythmia de sinais ECG. Uma acurácia de 88,9% foi alcançada para o Classificador Rítmico e de 81,73% para o Classificador Morfológico, no caso em que se considera a base de testes para avaliação. Os resultados obtidos demonstram a aplicabilidade das estruturas competitivas propostas para o problema de classificação de arritmias. |