Curvas elípticas e números congruentes

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Souza, Bruno Andrade de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Matemática
Ciências Exatas e da Terra
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/16800
https://doi.org/10.14393/ufu.di.2013.82
Resumo: The aim of this paper is to relate Congruent Numbers and Elliptic Curves. We describe an operation on the curve, which makes the set of its points, on any field, an abelian group. Next we present the Nagell-Lutz theorem, which gives us the necessary conditions for a point that has finite order in the group. Having done this, we prove the Mordell theorem for curves like y2=x3+ax2+bx; this theorem tells us that the set of rational points on elliptic curve is a finitely generated abelian group. Finally, we define congruent numbers, we present some properties and examples of such numbers and establish the connection between Congruent Numbers and Elliptic Cuves.