Absorvedor dinâmico de vibração tipo lâmina vibrante
Ano de defesa: | 2005 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Engenharia Mecânica Engenharias UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/14912 https://doi.org/10.14393/ufu.di.2005.03 |
Resumo: | This work is dedicated to the design of a vibrating blade dynamic vibration absorber (ADVLV), which is composed by a blade that is subjected to an initial traction T , and contains a concentrated mass m that is fixed at a given position d along the blade. These three parameters can be adjusted so that the ADVLV is tuned. For this aim, a finite element model of the system was built, leading to a design methodology for the absorber. Also, design of experiment techniques were performed to obtain the most interesting configurations for the system, both for the computational and experimental models. Special care was taken with respect to the boundary conditions for the finite element model, so that the dynamic responses could correspond to the physical aspects of the problem, accordingly. Besides, an experimental prototype was constructed and tested under laboratory conditions. The experimental results were compared with those obtained from mathematical simulation. From this comparison, it was concluded that the finite element model had to be updated in such a way that experimental results could match. A vibrating string dynamic vibration absorber (ADVCV) was also studied. However, this DVA configuration presented two anti-resonant frequencies due to the coupling of the first vibration mode along the horizontal and vertical directions with a concentrated mass. Another phenomenon that was observed is the tridimensional motion of the vibrating string around its equilibrium position, leading to an ellipsoid-shape movement when a harmonic excitation whose frequency coincides with the primary system resonance frequency is applied to the system. This way, the ADVCV is not able to attenuate the vibration amplitude of the primary system satisfactorily. It is worth mentioning that the proposed ADVLV presents a good dynamic behavior besides a wide frequency range along which the DVA can be tuned. Besides, the present vibration absorbing device is simple and can be easily connected to the primary system both to mechanical and civil engineering structures. |