Aprendizado de máquina para modelagem do crescimento e produção em povoamentos de Eucalyptus spp

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Araujo, Rafael Martins de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Agricultura e Informações Geoespaciais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/41084
http://doi.org/10.14393/ufu.di.2023.393
Resumo: The forestry sector, especially that of planted forests, is one of the most crucial pillars of Brazilian agribusiness. Brazilian planted forests stand out for their high productivity. In the planning of timber production, it is essential to have the ability to estimate production both in the present and, particularly, in the future. Studies in the field of biometrics have developed important approaches and models that accurately estimate production, especially based on linear and non-linear regression techniques. Currently, machine learning algorithms have been tested, and the results have proven to be very promising. Thus, this study aimed to evaluate machine learning algorithms for estimating present and future production in eucalyptus plantations. The following machine learning algorithms were assessed: Artificial Neural Networks (ANN), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). These methods were compared to the Clutter model, a system of linear equations traditionally used by the forestry industry for production prognosis. The models were fitted in four forest analyses, measured in 1280 permanent plots between 2013 and 2019 in the state of Minas Gerais. Machine learning models were adjusted using field biometric data and derivatives of remote sensing, such as vegetation indices. In general, machine learning models had lower estimation errors than the Clutter model, with SVM standing out. Additionally, the use of vegetation indices in the SVM model improved the accuracy of current production estimates. The use of traditional variables together with forest inventory registration variables in the SVM model enhanced the accuracy of future production estimates. Thus, the analyses demonstrated that machine learning models are good production estimators when associated with field biometric data and remote sensing derivatives.