Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Nascimento, Marcelo Branco do [UNIFESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Paulo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/11600/62515
|
Resumo: |
Finding a solution to an optimization problem involves looking for good results in a solution space. This task is computationally very costly, as it handles efficiently and robustly. The use of meta-heuristics falls into the category of methods used to solve these problems. Therefore, an appropriate adjustment of the metaheuristic parameters becomes important. This task is considered difficult, as there are differences between the nature of the parameters. To solve this tuning problem, this research developed the Bayesian Network Tuning (BNT). A method to tuning meta-heuristic parameters, using stochastic and adaptive strategies, which use statistical information of dependence between different parameters with a cluster search technique. Thus, it is intended to develop an efficient parameter tuning method based on the methodology of Distribution Estimation Algorithms, to assist meta-heuristics in solving optimization problems. Two validations were performed. The first, using AClib to compare with other tuning methods in different scenarios. In the second validation, a case study of the proposed method was carried out on the meta-heuristic Biased Random-Key Genetic Algorithm (BRKGA) to solve the 1D Packaging Problem (BPP 1D). In both results, BNT was competitive and robust compared to other tuning methods found in the literature. |