Estudo de método verde para produção de nanopartículas metálicas utilizando aminoácidos e luz

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Matos, Ricardo Almeida de [UNIFESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Paulo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1321119
https://repositorio.unifesp.br/handle/11600/47349
Resumo: Metal nanoparticles (10-9 m) exhibit properties such as high surface area, the effect of quantum confinement and plasmon resonance (SPR). The combination of these features gives the metal nanoparticles different potential applications. Currently, the synthesis of these nanoparticles is mostly carried out by chemical reduction, which is effective but uses a number of toxic substances, which makes the process potentially harmful to the environment. Thus, included in the current search for environmentally friendly synthetic methods, this study aimed to produce nanoparticles of silver and gold using only milli-Q® water, AgNO3/HAuCl4, white light and amino acids, characterized as "green chemistry". In total 21 different amino acids were studied by evaluating the shape and size of the nanoparticles obtained. This study also enabled a greater understanding of the synthesis of metal nanoparticles with natural substrates, methodology widely explored in the current scientific literature. Experimentally it has been observed that the synthesis of silver nanoparticles (AgNPS) is possible with the amino acid cystine, histidine, methionine, tyrosine and tryptophan, whereas the synthesis of gold nanoparticles (AuNPs) was possible with almost all amino acids, being the best with aspartic acid, arginine, threonine, tryptophan and valine. The size of the nanoparticles obtained ranged from 5 to 100 nm, with spherical shape. Changes in pH were required to improve the stability of colloidal suspensions. The characterization techniques used were UV-Vis spectroscopy, fluorescence, zeta potential, transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Ways to recover/reuse formed nanoparticles were also evaluated.