Estratégias de modulação para conversores multiníveis em cascata sob faltas
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/8497 |
Resumo: | Multilevel converters are being increasingly employed nowadays, specially in mediumand high-voltage industrial applications. Even though these converters are able to synthesize output line-to-line voltages with a high number of levels, close to a sinusoidal waveform, their modulation is more complex than the one for two- and three-level converters. In this context, this dissertation proposes new modulation strategies for multilevel converters, specifically symmetrical and asymmetrical cascaded multilevel ones, composed of many full-bridges, or power cells, per phase. If the converter has one or more faulty cells, they can be bypassed and the converter can continue to feed the load, increasing the process reliability. However, the converter phase voltages must be modified so as to keep the output line-to-line voltages balanced. With the objective of proposing modulation strategies that allow the cascaded multilevel converters to satisfactorily operate under these conditions, an extensive bibliographical review of the existing modulation techniques has been carried out. The carrier-based modulation approaches were studied first. It could be noticed that all these strategies belong to a larger set of solutions for the obtention of the converter modulating phase voltages. This set is derived in this work, resulting in a generalized geometrical modulation strategy for symmetrical and asymmetrical cascaded multilevel converters with any number of levels and operating under normal or faulty conditions. As the faulty cells are restrictions for converter operation, for each fault condition the region that contains all the possible converter common-mode voltages, that compensate for the loss of cells, is derived. The choice of a common-mode pertaining to this set allows the entire converter synthesis capability to be explored. The modulating voltages are the sum of the reference and the common-mode voltages, maximizing the amplitudes of the output line-to-line voltages. For asymmetrical cascaded multilevel converters, the voltages synthesized by the highervoltage cells are restrictions for the operation of the lower-voltage ones. Concerning the Space Vector (SV) modulation, it was derived only for the asymmetrical cascaded multilevel converter. The higher-voltage and lower-voltage cells switch, respectively, with low frequency by the choice of the nearest vector to the reference, and with high frequency, by the choice of the three nearest vectors to the reference, in one switching period. The voltage synthesized by the higher-voltage cells is subtracted from the reference, resulting in the new reference for the lower-voltage cells, and so successively, until the cells with the lowest voltages. A specific switching sequence is defined off-line for each sector of the SV diagram. The algorithm is carried out in a modified αβo coordinate system, resulting in switching vector with only integer entries. The choice of the switching vectors considers all the possible redundancies in abc coordinates. At last, simulation and experimental results Abstract that prove the good performance of the proposed modulation strategies are presented. |