A modelagem tridimensional no tratamento do problema direto da geodésia

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Pimentel, Daniel Carlos Cheron
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Geociências
UFSM
Programa de Pós-Graduação em Geomática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/9560
Resumo: For the transformation of the local coordinates in the global coordinates, and contrariwise, it can be employed the traditional method of Puissant or the 3D modelling. In this paper, both approaches were applied in the geodetic transport of the coordinates of a topographic polygonal, framed in the geodetic base lines AB and CD, considering the point B as the origin of the systems. The geodetic coordinates of supporting points (A, B, C and D) which were determined with GPS (Glogal Positioning System) and the observations which were obtained in topographic search. From the local coordinates (v, u, w) the polygon was calculated: the topographic components (Δv, Δu, Δw) and 3D modeling was transformed in geodesic components (ΔX, ΔY, ΔZ); the geodetic cartesian coordenates (X, Y, Z) which were subsequently transformed in geodetic coordenates (φ, λ, h). In the solution of the Geodetic Direct Problem (PGD) were used the topographic observations, corrected end reduced to the ellipsoid. The results comparison obtained by applying the two methodologies, suggested here, shows a standard deviation (σ) of ± 7,31x10-4 for the latitude (φ) and a standard deviation (σ) of ± 3,71x10-4 for the longitude (λ). This result in an uncertainty of ± 0,080 meters, in 95% significance level between the average position of a point determined by the 3D modeling and PGD. The change in the origin of the system did not cause a relative error above the limit established by the NBR 13.133 (Brasilian Norm 13.133), at the distances between the extreme points of the polygon. These results allow, in this case, the replacement of the PGD methodology for the 3D modeling and choose any point in the spatial database for origin of the systems. The 3D function model performs the conversion of the topographic coordindates in geodetic coordinates with equivalent accuracy to the traditional method of Puissant, with fewer calculations and enables reverse process. This methodology can be used for georeferencing and mapping work, rural and urban cadastre, cartographic updating, among others, in which uncertainty found can be accepted. The data suggest more evaluations of the functional model and the introduction of the stochastic model, for evaluating the quality of data and system. Keywords: Geodesy. Topography. Direct Geodetic Problem. 3D Modelling