Novo conversor CC-CC integrado full-bridge-forward aplicado a uma microrrede residencial
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
BR Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/3676 |
Resumo: | This Ph.D. Dissertation focuses on the proposal of a novel converter topology applied to the connection of an energy storage system, composed of a supercapacitor bank and a battery bank, to the dc bus of a residential microgrid. The proposed full-bridge-forward integrated dc-dc converter presents high voltage gain between the input and output, a fundamental requirement for the desired application, bidirectional power flow, galvanic isolation, among other features. The integration process, operation stages (including converter waveforms and equations), design methodology, dc modeling, among others, are presented. Three different clamping circuits structures are studied and applied to the proposed converter. Moreover, a comparison including several parameters with the dual active bridge converter, which is one of the most used topologies for similar applications is performed, highlighting the lesser number of active switches. Experimental results of the proposed converter in different operation modes are presented, validating the theoretical analysis. Experimental results of the dual active bridge converter are also presented and its performance is compared to the proposed converter, where it can be seen that the efficiency of the proposed converter is higher. The topology application is directed to microgrid systems, which attract high attention nowadays due to the possibility of renewable electric energy generation through distributed energy resources and with high reliability. |