Retenção e armazenamento da água da chuva na camada evaporativa do solo com e sem resíduos vegetais
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola Centro de Ciências Rurais |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/11391 |
Resumo: | The water evaporation (Es) is one of the main components of water balance and energy of ground surface. Precise measurements of the Es dynamics require the understanding of water and energy partition on the interface soil surface and atmosphere. The Es accumulated is a function of time, soil texture, and presence or absence of crop residues on soil surface, plants and its stage of development, rainfall and irrigation distribution, with strong influence of the atmosphere evaporative demand. This paper aims to quantify the effect of crop residues in no-tillage system on the components of soil water balance on irrigated and non-irrigated areas and evaluate the dynamic of retained water by the straw after the wetting cycles duet to raindall or irrigation events. Two experiments were carried out, on the experimental area of Department of Rural Engineering of Federal University of Santa Maria. The experiment I was carried out from 2013 to 2014, under a mobile reinaout shelter, in 9 m² plots. A bi-factorial experimental design was used, with three replications, where the factor A was the three soil covering levels: 0, 2 e 4 t ha-1 of black oat residues. The factor B was the three irrigation levels. It was used a micro sprinkling system with an application rate of 8 mm h-1 and a service pressure of 100 kPa. After every irrigation event, a sample of 0,09 m² of the crop residues was collected and weighted, in a time interval of 0, 3, 6, 24 hours after the irrigation, in order to measure the residues retained water. The soil water content was monitored in all experimental units, to a depth of 85 cm, using a set of FDR sensors. The soil water balance was determined by the relation between irrigation depth applied, subtracted the infiltrated irrigation detph, the water retained by the residues and the evaporated irrigation depth, after every irrigation event. The experiment II was carried out during 2015/2016 crop season, using microlysimeters (ML), with dimensions of 10 cm diameter and 10 cm height. It was used the same treatment levels of the experiment I, with three replications. A set of ML was installed in a fallow area with natural rainfall and a second set was installed in an area with soybean, both submitted to natural rainfall. The MLs were weighted, daily, at 6 p.m., with the exception of the days with rainfalls. The Es of the ML was determined by the reason of the difference between the mass of ML measured at time intervals of 24h and ML area. The results indicated that the increase on the quantity of residues from 2 to 4 t ha-1 did not improve the water interception and storage by residues. The evaporation daily percentage was more influenced by atmosphere evaporative demand than by the amount of crop residues on soil surface. Crop residues are important to preserve the soil moisture and have direct impact on soil water availability and the soil water balance during the entire crop cycle duration. |