Receptor ativado por proliferador de peroxissomo gama (PPARγ) na divergência folicular em bovinos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Ferst, Juliana Germano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Medicina Veterinária
UFSM
Programa de Pós-Graduação em Medicina Veterinária
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
TZD
Link de acesso: http://repositorio.ufsm.br/handle/1/10225
Resumo: Endocrine and locally produced factors are involved in the selection of the dominant ovarian follicle in the cow. Studies have been conducted to elucidate the precise mechanism by which, in most cases, only one follicle becomes dominant in monovulatory species. A better understanding of the factors involved in this period can serve as a basis to better exploit the reproductive potential in cattle. A complete knowledge of these factors remains unknown. The receptor peroxisome proliferator activated gamma (PPARγ, also called NR1C3) is a member of the PPAR nuclear receptors family. This family of receptors has been shown to be expressed in reproductive tissues of different species and their role in steroidigenesis and regulation of apoptosis. However, involvement of this receptor in folliculogenesis in cattle remains unknown. This study aimed to evaluate the role of PPARγ during the period of follicle deviation in cattle. At first, the PPARγ mRNA expression was evaluated in granulosa cells of the two largest growing follicles, before (day 2 of the follicular wave), during (day 3) and after (day 4) the follicle deviation period. The mRNA abundance was unchanged during follicular growth in both granulosa and theca cells. In a second experiment, the PPARγ agonist (TZD) was injected intrafollicularly in the dominant follicle in vivo in cows. The agonist caused follicular atresia, demonstrating that the activation of PPARγ in the dominant follicle prevent follicle growth. To determine the mechanism underlying the effects of PPARγ in granulosa cells in vivo, the dominant follicle of each cow was injected with PBS or TZD and the animals were ovariectomized 24 hours post injection. The stimulation of the PPARγ in the dominant follicle reduces the abundance of mRNA encoding the aromatase (CYP19A1) gene, the enzyme responsible for converting androgens to estradiol in granulosa cells and important for follicular development. In conclusion, the increased signaling of PPARγ downregulates aromatase and induces follicular atresia in cattle.