Uma técnica otimizada de clusterização para segmentação de imagens de TC de tórax de alta-resolução

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Porto, Marcelo Arrais
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/12169
Resumo: Lung segmentation is a fundamental step in many image analysis applications for lung diseases and abnormalities in thoracic computed tomography (CT). However, due to the large variations in pathology that may be present in thoracic CT images, it is difficult to extract the lung regions accurately, especially when the lung parenchyma contains extensive lung diseases. A major insight to deal with this problem is the existence of new approaches to cope with quality and performance. This paper presents an optimized superpixel clustering approach for high-resolution chest CT segmentation. The proposed algorithm is compared against some open source superpixel algorithms while a performance evaluation is carried out in terms of boundary recall and undersegmentation error metrics. The over-segmentation results on a Computed Tomography Emphysema Database demonstrates that our approach shows better performance than other three state-of-the-art superpixel methods.