Aplicação de componentes principais e regressões logísticas múltiplas em sistema de informações geográficas para a predição e o mapeamento digital de solos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Caten, Alexandre Ten
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
BR
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/5483
Resumo: Social demands on soil information have grown dramatically, meanwhile the soil surveys are seldom carried out in the country. Digital soil mapping techniques can be applied to infer the spatial distribution of soil from existing soil maps or from reference areas, extrapolating this information to areas not mapped. The purpose of this study was to apply in a Geographic Information System the Multiple Logistic Regressions (MLR) using Principal Components (PC) as explanatory variables to predict soil classes spatial distribution. The study area was the region of municipality São Pedro do Sul / RS. For the development of predictive models a set of nine terrain attributes were used. Model training was executed on an existing soil map and with a survey carried out in a reference area, both in a 1:50.000 scale. The first three retained PC explained 65.57% of the data variability. The predictive models which used PC had lower values of kappa index. The most accurate predicted map reached a kappa value of 63.20% and was generated by using the nine attributes of land as predictive covariates. The mapping accuracy is sensitive to similarities between the mapped classes, and mapping in a more homogeneous categorical level reduces the accuracy of the predicted maps. Soil classes relatively not representative in the training maps are not properly spatialized. The use of MLR allows spatializing of soil classes to areas not mapped, although the use of PC needs to be tested with a larger number of covariates.