Sistema de recomendação de processos para o desenvolvimento de jogos digitais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Politowski, Cristiano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/13859
Resumo: The digital gaming market is a billion dollar industry that faces issues in the way games are developed. One method to easy these issues is to use developer aid tools such as Recommendation Systems. These applications have a branch for software engineering, assisting the developer by generating recommended tasks. This work, therefore, aims to mitigate issues in digital game projects, developing a processes recommendation system, based on learning through past experiences in similar game projects, found in the form of postmortems. Our work brings three main contributions. The first one is a database containing experiences extracted from postmortems in the shape of development processes. The second is the definition of a context for digital gaming projects that characterizes and categorizes gaming projects. The third is a recommendation system for digital game projects that uses a list of similar projects and the development team profile to generate a new process with tips and guidance on tasks to be performed. Recommended processes assist developers in designing the game development process, listing activities and practices of projects with similar context, in the form of a software process. The extracted processes were validated with the game developers. The elements of the processes, generated by the recommendation system, were validated using precision and recall, and also together with the developers / authors of the analyzed game projects.