Análise numérica multiescala de meios porosos elasto-plásticos usando o método FE² direto

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Moos, Eduardo Turra
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Engenharia Mecânica
UFSM
Programa de Pós-Graduação em Engenharia Mecânica
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufsm.br/handle/1/33805
Resumo: Porous materials, especially those produced through additive manufacturing, have gained prominence due to their ability to offer lightweight, customized structures with optimized properties. However, microstructural heterogeneities, such as voids and inclusions, pose a significant challenge in accurately predicting their mechanical behavior, particularly in applications involving cyclic loading or requiring high structural reliability. In this context, multiscale numerical methods, such as the direct FE² method, stand out by enabling detailed analysis of interactions between micro and macro scales, maintaining a balance between precision and computational efficiency. In this study, the direct FE² method was used to analyze elastoplastic porous materials with cylindrical voids, considering void volume fractions ranging from 1% to 10%. Three distinct loading cases were investigated: simple tension, simple shear, and cantilever beam bending. Comparison with direct numerical simulations (DNS), where heterogeneities are fully modeled at a single scale, revealed that the direct FE² method exhibits high accuracy, with discrepancies below 2% for force-displacement curves and equivalent stress fields. Furthermore, the direct FE² method demonstrated a significant reduction in computational cost, requiring only about 50% of the processing time needed for DNS. The substantial computational advantage of the direct FE² method, which uses a fraction of the computational time required for DNS, makes it an attractive option for multiscale simulations of elastoplastic porous materials, offering precision, efficiency, and robustness.