Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Lopes, Jamilly Ribeiro
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Almeida, Luís Eduardo |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Ciência e Engenharia de Materiais
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/3468
|
Resumo: |
Alternative materials have long been studied and developed to replace conventional skin dressings due to the emergence of new biopolymers and development of new polymeric film fabrication techniques. As a new material for polymeric dressings, films of poly (hydroxybutyrate) (PHB) blended with esterified alginate (ALG-e) and Poly (ethyleneglycol) were studied. The esterification of sodium alginate (ALG-e) generated a material with some amphiphilic characteristics and increased its compatibility with the PHB. PEG was added as plasticizer in PHB/ALG-e films, since PEG is often used in blends with PHB to improve its flexibility and reduce its hydrophobicity. At the amounts studied, it was found that both PEG and ALG-e increase the degree of crystallinity, but a decrease in the hydrophobic nature of PHB films was observed. At the maximum concentration of ALG-e and PEG used an increase in water vapor permeability and a decrease in tensile strength was reached due to the synergistic effect caused by better homogenization of PEG and ALG-e in the PHB matrix. |